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Abstract

The basic analytical theory for hydrostatically caused implosions of spherical volumes, which has been known for

nearly a century, has been extended for the treatment of cylindrical volumes with deformable solid inner structures.

Theoretical analyses are developed that treat the inner structure as infinitely hard, elastically deformable, plastically

deformable or shattering under the influence of the pressure from the surrounding implosion event. Parametric studies

are made of the effect of the inner structure’s geometric and material properties on the pressure field of the surrounding

water. Results are compared with a previous study that focused on spherical volumes.

& 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Previously (Cor and Miller, 2009), we explored the implosion of spherical volumes that house spherical inner shells

that are infinitely strong, brittle, plastic, or elastic. This work was based on the bubble collapse theory developed by

Lord Rayleigh (1917) and Lamb (1932), and subsequently modified by other workers to incorporate the internal gas

pressure that permitted the analysis of the oscillating bubble phenomenon. In this theory, the bubble initially contracts

under the outside pressure of the liquid. When the interior gas pressure increases to the point where it balances the

combined hydrostatic and hydrodynamic heads, the gas volume stops decreasing. Then the higher relative interior

pressure acts to force the gas bubble radius outward, until the exterior hydrostatic pressure is enough to counter the

interior gas pressure plus the gas hydrodynamic head. The bubble motion reverses itself once again, and the bubble

begins to contract. The gas volume oscillation also produces oscillations in the pressure field of the surrounding

seawater. The oscillating pressure field can serve as an acoustic source, or if sufficiently large, can produce a pressure

wave with sufficient energy to damage nearby structures.

An implodable volume can be defined as any pressure housing containing a non-compensated compressible volume

of gas at a pressure below the external sea pressure, which has the potential to collapse. Fluid–structural interactions

have been studied previously in related applications. The interaction of an external explosion with a deformable or

collapsible inner structure was investigated by Iakovlev (2004, 2006). The interaction of a bubble caused by an
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Nomenclature

A surface area (m2)

c speed of sound (m/s)

C circumference (m)

E bulk modulus of elasticity (Pa)

F Bernoulli equation function (m2/s2)

K bulk modulus of plasticity (Pa)

p pressure (Pa)

P gas (acoustic) pressure (Pa)

q kinetic energy (m2/s2)

r radius (m)

R implodable volume outer radius (m)

t time (s), thickness (m)

U velocity (m/s)

v solid velocity or local velocity (m/s)

V volume (m3)

w potential energy (J)

g ratio of specific heats

d differential distance (m)

e strain

m dynamic viscosity (N s/m2)

r density (kg/m3)

s stress (Pa)

j stream function

Subscripts

a acoustic

EQ equilibrium

g gas

H hoop

L liquid or longitudinal

LIM limiting value

m metal

0 initial condition

r radial

V value at shell inner surface

1Z far field (infinity)

y azimuthal
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underwater explosion with an object on the water surface was studied by Zong (2005) and Klaseboer et al. (2005).

Kalumuck et al. (1995) studied bubble interaction with nearby bodies using three-dimensional boundary-element based

computer codes. The analysis of real world geometries in studies such as these requires substantial computational

resources; however, the objective of this study – as was the objective of our study of spherical structures – is more

modest: evaluating the effect of internal structure on the behavior of cylindrical implodable volumes. As previously

discussed (Cor and Miller, 2009), the US Navy employs extremely conservative safety factors for controllable volumes,

because subtracting the volume of items internal to the implodable is not allowed. Therefore, the goal of the current effort

is to eventually assess the degree of conservatism of the current safety criteria.

In our previous paper, we gave an overview of the reason for interest in this area as it relates to implodable volumes

that might be formed external to submerged vessels, and might cause a safety hazard to those vessels. While implodable

volumes with cylindrical geometries are of practical interest in this regard, no cylindrical analog exists for the Rayleigh

collapse model. Kedrinskii (1976) proposed an approximation compatible with experimental data that also is supported

by studies for supercavitating flows. Kedrinskii’s approach has been used to predict the implosion of cylindrical

volumes that house cylindrical inner shells that are infinitely strong, brittle, plastic, or elastic; see Fig. 1.
Outer Liquid

Outer Gaseous
Volume 

Thin, Structured
Inner Shell

Inner Gaseous
Volume 

Fig. 1. Implodable volumes with cylindrical geometry.
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2. Basic theory—cylindrical volume with infinitely strong inner structure

Starting with the assumption of an irrotational and incompressible external fluid, its movement can be described with

the Bernoulli Eq.

@f
@t
� qþ F ðtÞ ¼

p

r
; ð1Þ

where j is the velocity potential, q the kinetic energy, p the liquid pressure, r the liquid density and F(t) is a function of

time. For the case of spherical coordinates, the velocity potential satisfies Poisson’s Eq.

@
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The Bernoulli equation and Poisson’s equation lead, with some manipulation, to the equation of motion of an

imploding spherical volume
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where R is the radius of the volume, R0 its initial radius, RV the radius of the inner volume, and g the ratio of specific

heats.

Vokurka (1985) showed that the pressure in the liquid surrounding the implodable volume is given by

pa ¼
R

r
Pa þ

1

2
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In Eq. (4), pa refers to the acoustic (local minus hydrostatic) pressure and Pa refers to the acoustic pressure of the gas.

The basis of our previous work (Cor and Miller, 2009) was the solution of Eqs. (3) and (4) using the Runge–Kutta–

Nystrom method with a time step in the order of 10�7 s.

An exact analytical solution does not exist for cylindrical geometries, because the Bernoulli equation is unbounded at

infinity. Therefore, our previous study was centered on spherical geometries. However, Kedrinskii (2005) proposed

using an approximate conservation law for flow in cylindrical geometries based on the Kirkwood–Bethe hypothesis

(Cole, 1948)
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In Eq. (5), c is the local speed of sound, v is the local velocity andw¼
Rp

p1

dp=r. If the speed of sound is infinite, as it is

in an incompressible fluid, Eq. (5) becomes

r
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4
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2

p� p1

r
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For cylindrical symmetry,

v¼
R

r

dR

dt
ð7Þ

Substituting Eq. (7) into Eq. (6), along with the definition of a total derivative,

dv

dt
¼
@v

@t
þ v
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; ð8Þ
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yields the following:
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At the surface of the bubble, assuming the ideal gas law, this becomes
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However, applying Eq. (9) far from the bubble surface leads to physically unrealistic results.

It is also possible to integrate Euler’s equation in cylindrical coordinates to produce the following equation for

motion in the liquid
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where RLIM is a limiting value of fluid radius beyond which the bubble does not entrain mass. Kedrinskii (1976)

assigned a value r0 to this radius when the bubble radius is R0. Eq. (11) can then be re-written as
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Through comparison of Eq. (12) with experimental data, Kedrinskii indicated that good agreement was observed

when the approximation lnðr0=RÞ � 2 was made. Likhterov (2000) employed this approximation to the study of high-

frequency acoustic emission generated by a cylindrical underwater explosion. Serebryakov (1976) and Logvinovich and

Serebryakov (1975) developed equations identical in form for the prediction of the cylindrically symmetric shape for a

supercavitating bubble in high speed flows. Their work presented a theoretical and mathematical basis for setting

lnðr0=RÞ ¼ 2. Good agreement between simulations made using these equations and observations of supercavitating

bubbles (Logvinovich, 1969) gives additional support for the approximation. In addition, making this approximation,

along with the approximation that r044R, reduces Eq. (12) to the same form as Eq. (10) at the bubble surface.

Eq. (12) can be re-arranged to calculate the acoustic pressure
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Fig. 2. Comparison of measured acoustic signal from the implosion of a 30-inch-diameter cylinder measured by Price and Shuler (solid

line) with the calculated acoustic response (dotted line).
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Table 1

Sample analysis problem conditions.

Initial radius 50 cm

Strong inner shell radius 5 cm

Initial shell pressure 1 atm

Time increment of calculations 10�7 s

Depth 100 m

Liquid medium Water

Gas medium Air
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Fig. 3. Cylindrical volume radius under conditions given in Table 1. Dashed lines present results for depth variations from the baseline

value of 100 m.

time (ms)

Ve
lo

ci
ty

 (m
/s

)

0 20 40 60 80
-100

-80

-60

-40

-20

0

20

40

60

80

100

Depth = 100 mDepth = 50 m

Depth = 200 m

Fig. 4. Cylindrical volume surface velocity under the conditions given in Table 1. Dashed lines present results for depth variations

from the baseline value of 100 m.
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On the bubble surface, Eq. (12) becomes
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In the work reported below, Eq. (14) was integrated numerically using the Runge–Kutta–Nystrom method with a

time step in the order of 10�7 s. At each time step, the values for R, dR/dt and d2R/dt2 obtained from integrating

Eq. (14) were inserted into Eq. (13) to obtain the acoustic pressure in the surrounding liquid.
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Fig. 5. Cylindrical volume gas pressure under conditions given in Table 1. Dashed lines present results for depth variations from the

baseline value of 100 m.
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Fig. 6. Acoustic pressure in liquid surrounding cylindrical volume under conditions given in Table 1. In the order of increasing

magnitude, the data are presented at 22.8, 23.8, 24.4, 24.6, 24.8, 25.0, and 25.4 ms (peak magnitude of acoustic field).
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A comparison was made between the predictions of Eqs. (13) and (14) and experimental data from a study by Price

and Shuler (1974). In this study, cylinders were lowered or dropped into the ocean and sank until they imploded.

Hydrophones recorded the acoustic signals from the imploding cylinders. Fig. 2 shows hydrophone data for a 0.76 m

diameter by 2.44 m long carbon-steel cylinder tank that was lowered into the water and whose implosion was estimated

to occur at a depth of 40 m. Also shown in this figure is the calculated acoustic response from the cavity implosion. The

location of the hydrophone relative to the tank at the time of implosion was not given, so calculated results are

normalized to the peak acoustic intensity. The modeling appears to capture to fundamental harmonic of the structural

implosion to an encouraging degree, considering the approximate nature of the experimental reporting.

An example analysis was made of an implodable cylindrical volume under the conditions given in Table 1. Fig. 3 shows

the calculated radius for the volume through the first cycle of oscillation. The volume reaches its minimum and returns to its

initial value in approximately 52 ms, after which the cycle repeats itself. Also shown in Fig. 3 are results where the volume

depth is half and twice the baseline depth of 100 m. The effect of increasing depth is to decrease both the period of oscillation

and the minimum radius of the gas volume. Fig. 4 shows the velocity of the volume’s outer surface for the baseline depth and

half and twice the baseline depth. The peak surface velocities increase with depth. Fig. 5 shows how the interior gas pressure

varies with time. As expected, the peak pressure increases with depth. Figs 3–5 show that the minimum radius, peak velocity

and peak pressure all occur at the same point. Fig. 6 presents a sequence of values of the liquid acoustic pressure, up to the

peak pressure, calculated using Eq. (13). The range of influence for the imploding volume is limited by the lnðr0=RÞ � 2

assumption; however, we are interested in only the initial pressure pulse in close proximity.
3. Inner shell deformation or failure

3.1. Stress analysis

Study cases were chosen such that the inner shell was allowed to fracture in a brittle fashion, or deform plastically or

elastically. The analyses were made with the assumption that the inner, solid structure responds instantaneously to

disturbances. For all cases the thin-walled assumption was made for computing inner shell stresses. For shells with

thickness less than one-tenth the inner wall radius, this assumption results in errors of less than 5% of the actual wall

stress. For a thin-walled cylindrical vessel, the longitudinal (axial) and hoop stresses are given by

sL ¼
1

2
ðpinner � pouterÞ

r

t
; sH ¼ ðpinner � pouterÞ

r

t
; ð15Þ

where t is the thickness of the vessel wall, the outer pressure is that of the imploding volume surrounding the inner shell,

and the inner pressure is the pressure of gas volume contained by the inner shell. The inner and outer pressures are

transient, and therefore the stress acting on the shell is transient as well. The propagation of stress through the elastic/

plastic/brittle shells was assumed to occur infinitely fast. The wall stresses are principal stresses and it was assumed that

failure occurs in one of the shell’s principal planes.

3.2. Brittle shell

For the case of a brittle shell, when the principal stress exceeded the maximum allowable stress, the shell was assumed to

shatter. Such an assumption might be appropriate for a cast iron or composite material, for instance. It was assumed that the

shell retains its initial thickness and radius up to the point where the maximum allowable stress is reached. When the maximum
Table 2

Sample brittle inner shell problem conditions.

Initial gas volume radius 50 cm

Brittle shell outer radius 40 cm

Brittle shell thickness 5 mm

Initial gas pressure 1 atm

Time increment of calculations 10�7 s

Gas volume depth 100 m

Liquid medium Water

Gas medium Air

Shell failure stress 0.33 GPa
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allowable stress was reached, the shell shattered, and Eqs. (13) and (14) were re-adjusted by re-setting the shell radius RV to

zero, and re-setting R0 to the value of R at the point of failure. The gas pressure at the point of shattering was calculated by

assuming that the gas in the inner shell, at pinner, and the gas in the surrounding volume, at pgas, mix isentropically

pnew ¼ pinner
RV

R

� �2

þ pgas 1�
RV

R

� �2
" #

: ð16Þ

RV in Eq. (16) is the radius of the inner shell before failure. The isentropic mixing assumption is one limiting case of

conditions inside the gas volume at the point of shell failure. The study of non-isentropic mixing of the two gases was
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Fig. 7. Cylindrical volume radius under conditions given in Table 2, assuming a strong inner shell (dashed line) and a brittle inner shell

(solid line).
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Fig. 8. Cylindrical volume gas pressure under conditions given in Table 2, assuming a strong inner shell (dashed line) and a brittle

inner shell (solid line).
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Fig. 9. Acoustic pressure in liquid surrounding cylindrical volume under conditions given in Table 2, assuming an infinitely strong

inner shell (a) and brittle inner shell (b). In the order of increasing magnitude, the data for Fig. 9 (a) are presented at 12.2, 13.6, 13.8,

14.0, 14.2, and 14.4 ms (the time of peak magnitude of the acoustic field). In the order of increasing magnitude, the data for Fig. 9 (b)

are presented at 21.8, 25.4, 26.2, 26.8, 27.4, and 28.2 ms (the time of peak magnitude of the acoustic field).
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left as a venue for future research. Isentropic mixing and compression of the gas is the most conservative assumption.

Propagation of a gas phase shock wave will act to dissipate some of the implosion energy, as will any form of two-phase

mixing. The reflected pressure impulse with high theoretical levels predicted can only occur if the structure fails

uniformly and the compression process is independent of azimuth.

An example problem with a brittle shell was run using the conditions shown in Table 2. The failure stress was chosen

to be consistent with cast iron. To make a more ready comparison with results for spherical geometries, the values in

this table are the same as used in Cor and Miller (2009).

The analysis was first run assuming an infinitely strong inner shell that was not allowed to fail, and then was run

assuming the shell is brittle. With the brittle shell, failure occurred at 14 ms at a gas pressure of 42 atm. Fig. 7 shows the

calculated gas radius for the strong and brittle cases. The failure of the shell reduces the minimum gas radius and

increases the period of oscillation. Fig. 8 shows a plot of the gas pressure assuming a strong and brittle inner shell. The

effect of shell failure is to reduce the peak gas pressure by almost a factor of three. The same reduction in the water’s

acoustic pressure can be seen by comparing Figs. 9(a) and (b). The times in Fig. 9(b) are centered on the peak acoustic

pressure, which can be identified by the second peak in Fig. 8.
3.3. Plastic shell

A dynamic model for the plastic deformation of casings under external loads was developed by Tan et al. (2003).

They used the following constitutive law for viscoplastic (ignoring elastic) deformation:

sy � sr ¼ sgn
dr2

dt

� �
2K � 4m

dv

dr

� �
; ð17Þ

where sy is the azimuthal stress, sr the radial stress, dr2/dt the velocity on the outer surface of the casing, m the dynamic

viscosity, v the radial velocity in the casing, sgn the sign function, and K the bulk modulus of plasticity. They also

expressed the conservation of mass and Euler’s equation as

dv

dr
þN

v

r
¼ 0; ð18Þ

and

rm

dv

dt
þ v

dv

dr

� �
¼

dsr

dr
þ

N

r
ðsr � syÞ; ð19Þ

where N=1 for cylindrical geometries and N=2 for spherical geometries, and rm is the density in the casing.
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Combining Eqs. (17), (18), and (19), it can be shown that the equation of motion for the cylindrical casing is

rm ln
r2

r1

� �
d2r1

dt2
þ rm ln

r2

r1

� �
�

1

2
1�

r2

r1
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dr1
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� �2

¼ srðr2Þ � srðr1Þ � sgn
dr2
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� �
2K ln

r2

r1

� �

�
2m
r1

1�
r2

r1

� �2
" #

dr1

dt
; ð20Þ

where r2 is the outer casing radius and r1 the inner casing radius. For the current application, sr(r2) is the negative of the gas

pressure of the implodable volume and sr(r1) is the negative of the gas pressure inside the shell, which now varies as the shell

expands or contracts based on the ideal gas law. As the implodable volume’s expansion and contraction was calculated,

Eq. (20) was integrated, using the Runge–Kutta–Nystrom method, to obtain the inner radius of the plastic shell as a function

of time. Assuming the shell material is incompressible, mass conservation was used to calculate the outer shell radius from the

updated value of the inner shell radius. This relatively simple numerical integration of Eq. (20) was used in lieu for doing a

complete FEM analysis of the shell, which was deemed a reasonable approximation for the thin shells analyzed in this study.

An example problem was run using the conditions listed in Table 3. Again, the values are the same as used by Cor

and Miller (2009). Shell material properties were taken from those reported by Tan et al. (2003). To isolate the effect of

plastic deformation, the shell was not allowed to fail, although stresses would be great enough to have done so. Fig. 10

shows the trace of the gaseous volume’s radius versus time when the inner shell is infinitely strong, and when it is plastic.

Fig. 11 shows the corresponding gas pressures for the infinitely strong and plastic shells. The scale in Fig. 11 was

changed to logarithmic to better display the pressure traces on the same graph. It can be seen that the plastic

deformation of the shell reduces the maximum gas pressure inside the implodable volume by almost two orders of

magnitude. Fig. 12 shows the variation of the plastic shell’s outer radius with time. After the outer gas pressure reaches

a critical level, the shell plastically deforms to a new radius. It can be seen that the change in radius goes through three

brief periods of zero slope. These points of zero slope come about because as the inner shell contracts, an increase in the

gas volume ensues. The pressure in the outer gas volume decreases, temporarily halting further compression of the inner

shell. Pressure must build up once again to a point where compression of the inner shell can continue. A comparison of

the liquid acoustic pressure fields assuming a strong and plastic shell is presented in Fig. 13. The results show that the

plastic deformation of the shell reduces acoustic pressure excursions by two orders of magnitude.

3.4. Elastic shell

For elastic materials, the assumption was made that the stress propagation is instantaneous. This again allows for a

simplified analysis of the shell. For a purely elastic thin shell, the average azimuthal strain is

e¼
sy
E
; ð21Þ

where E is the bulk modulus of elasticity. The azimuthal strain is the same as the hoop stress, calculated in Eq. (15), and

changes in value as the structure’s inner pressure and outer (gas volume surrounding the structure) pressure change. The
Table 3

Sample plastic inner shell problem conditions.

Initial gas volume radius 100 cm

Shell outer radius 88 cm

Shell thickness 8 mm

Initial gas pressure 1 atm

Initial inner shell pressure 1 atm

Time increment of calculations 10�7 s

Gas volume depth 300 m

Liquid medium Water

Gas medium Air

Material viscosity 3000 N s/m2

Material density 7890 kg/m3

Plasticity modulus 0.53 GPa

Modulus of elasticityn 8 GPa

nUsed for elastic shell analysis.
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Fig. 11. Outer gas volume pressure under conditions given in Table 3, assuming a strong inner shell (dashed line) and a plastic inner

shell (solid line).
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Fig. 10. Outer gas volume radius under conditions given in Table 3, assuming a strong inner shell (dashed line) and a plastic inner shell

(solid line).
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differential change of circumference (dC) is found from

dC ¼Ce¼
2prsy

E
: ð22Þ

The change in radius is then

dr¼
dC

2p
¼

rsy
E
: ð23Þ
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Fig. 13. Acoustic pressure in liquid surrounding cylindrical volume under conditions given in Table 3, assuming that the inner shell

does not fail or deform (a) and assuming that the inner shell deforms plastically (b). In the order of increasing magnitude, the data in

Fig. 13 (a) are presented at 12.51, 12.59, 12.63, 12.65, 12.67, and 12.71 ms (the time of peak magnitude of the acoustic field). In the

order of increasing magnitude, the data in Fig. 13 (b) are presented at 12.29, 12.35, 12.41, 12.47, 12.51, and 12.57 ms (the time of peak

magnitude of the acoustic field).

Fig. 12. Inner shell’s outer radius under conditions given in Table 3, assuming that the inner shell deforms plastically.
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In terms of the inner shell radius (r1) the inner shell strain is

e1 ¼
dr1

r1
¼

sy
E
: ð24Þ

If the shell material is incompressible, the outer shell strain must then be (neglecting higher order terms)

e2 ¼ e1
r1

r2

� �2

: ð25Þ
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Updated inner and outer radii are then given by

r1ðnewÞ ¼ r1ð1þ e1Þ; r2ðnewÞ ¼ r2ð1þ e2Þ: ð26Þ

At each time step in the integration of the problem, the strains e1 and e2 were calculated using Eqs. (15), (24) and (25),

and new inner structure inner and outer radii were calculated using Eq. (26). These new radii were then used in

the succeeding time step of the integration. The inner shell pressure was updated based on its shell radius using the

ideal gas law. This relatively simple analysis was again used in lieu of complete FEM analysis of stress and strain in the

shell.
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Fig. 14. Cylindrical gas volume radius (solid line) and shell outer radius (dashed line) under conditions given in Table 3, assuming that

the inner shell deforms elastically.
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Fig. 15. Outer volume gas pressure under conditions given in Table 3, assuming a strong inner shell (dashed line) and an elastic inner

shell (solid line).
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An example analysis for an elastic shell was run under the conditions given in Table 3. The modulus of elasticity

chosen was that of cast iron. The shell was not allowed to fail so that the effect of the elastic deformation could be

isolated. Fig. 14 shows the variation of the gaseous volume’s radius and the shell’s outer radius with time. The gaseous

radius behaves in a manner similar to that found for the plastic shell (Fig. 10), although in Fig. 14 it assumes a smaller

minimum radius in its oscillations. This is because the shell radius reaches a smaller minimum value than it did in the

plastic case (Fig. 12). The elastic shell oscillates about a new, lower value after an initial contraction. Fig. 15 shows

the variation of the outer volume’s gas pressure with time assuming an elastic inner shell, with the pressure trace for the

strong inner shell included for reference. There is an oscillation in the gas pressure during the first contraction of the

elastic shell, although at a higher frequency than encountered for the plastic case (Fig. 11).

Fig. 16 shows the calculated liquid acoustic pressure for the case of an elastic inner shell. The scale of this figure was

expanded relative to Fig. 13 so that the pressure excursions could be displayed in detail. The acoustic excursions are

significantly reduced over those found assuming an infinitely strong inner shell (Fig. 13 (a)) and the plastic inner shell

(Fig. 13 (b)). This is not surprising when the peak gas pressure for the elastic shell (Fig. 15) is compared to the peak

pressure shown for the plastic shell (Fig. 11).

The results of the analysis of deformable cylindrical shells are similar to the analytical results for deformable spherical

shells. They indicate that there is some non-recoverable work that is done in compressing the shell to a new equilibrium

value. This is true whether the shell deforms elastically or plastically. The equations for the gas may have to be modified

to accurately calculate the additional pressure losses due to this non-recoverable work.
3.5. Failure of deformable shells

The analysis of the plastic and elastic shells was now modified so that they would both fail at the failure stress value

given in Table 2. Failure of the plastic shell occurred at 12.04 ms at a pressure of 30.74 atm. Failure of the elastic shell

occurred at 12.21 ms at a pressure of 30.98 atm. At this point, the shell was assumed to have shattered and results were

similar for the two cases.

Fig. 17 is a plot of the gaseous volume radius and pressure for the cases where the shells failed. The maximum

pressure in Fig. 17 is one order of magnitude higher than shown in Figs. 11 and 15 for the plastic and elastic shells. The

work that was done to compress the shells plastically or elastically is now available for compression of the gas volume,

and the pressure in the gas is therefore higher.
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Fig. 16. Acoustic pressure in liquid surrounding cylindrical volume under conditions given in Table 3, assuming that the inner shell

deforms elastically. In the order of increasing magnitude, the data are presented at 12.39, 13.59, 14.79, 15.99, and 18.19 ms (the time of

peak magnitude of the acoustic field).
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Fig. 18. Acoustic pressure in liquid surrounding cylindrical volume under conditions given in Table 3, when the plastic inner shell

(plastic or elastic) fails. In the order of increasing magnitude, the data are presented at 28.19, 28.59, 28.79, 28.99, and 29.19 ms (the

time of peak magnitude of the acoustic field).
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Fig. 17. Outer volume radius and pressure under conditions given in Table 3, when the inner shell (plastic or elastic) fails.
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Fig. 18 shows the acoustic pressure in the surrounding liquid when the shell is allowed to fail. Although the peak

acoustic pressure is increased over that of Figs. 13 (b) and 16, it is still significantly reduced over that shown in Fig. 13

(a) for the infinitely strong shell.
4. Parametric study

4.1. Non-destructible plastic inner shell

A parametric study was made of implodable volumes with a plastic inner structure over a range of conditions. Studies

showed that the structures were relatively insensitive to the values of material viscosity and density chosen, so values of
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Fig. 19. Contour plots of maximum acoustic pressure at two times the initial outer volume radius with plastic inner shell with an initial

outer shell radius of 10 cm.
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4000 N s/m2 and 7850 kg/m3 were assigned, respectively. Fig. 19 is a set of contour plots for the maximum acoustic

pressure at two initial gas volume radii with an initial outer gas volume radius of 10 cm. The axes of this figure are the

depth below the surface, the ratio of the initial inner plastic shell radius to the initial outer gas shell radius, and

the material modulus of plasticity. The inner shell thicknesses are reported in percents of the initial plastic shell radius.

The maximum acoustic pressure tends to be largest at the maximum depth and the minimum inner-to-outer radius ratio.

This is because the gaseous volume being compressed is reduced as the inner radius approaches the value of the outer

radius. The maximum acoustic pressure increases with depth because at greater depths the gaseous volume can be

compressed to a greater degree. Increasing the modulus of plasticity tends to increase the acoustic pressure. Thicker inner

shells increase the maximum acoustic pressure by making the inner structure stronger and allowing more work to go into

compression of the gas. At large depths and high values of the plasticity modulus and shell thickness, inner-to-outer

radius ‘‘minima’’ begin to appear. Below the value of these minima, the increase in the gaseous volume causes the

maximum acoustic pressure to increase; above these minima, the increased strength of the shell causes the acoustic

pressure to increase.
4.2. Non-destructible elastic inner shell

A parametric study was made of implodable volumes with an elastic inner structure over a range of conditions. The

maximum acoustic pressure was again calculated at a distance of two times the initial outer gas volume radius. Fig. 20 is

a set of contour plots for the maximum acoustic pressure at this distance when the inner shell has an elastic modulus of

68 900 MPa. The axes of this figure are the initial outer gas volume radius, depth, and ratio of inner (shell) to outer

(gas volume) radius. A noticeable ‘‘rippling’’ of the contours is evident in this figure, especially at higher shell

thicknesses. To better isolate the effects at play causing this ‘‘rippling,’’ the maximum acoustic pressure is plotted versus
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Fig. 20. Contour plots of maximum acoustic pressure at two times the initial outer volume radius with an elastic inner cylinder with a

modulus of elasticity of 68 900 MPa.
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depth and the ratio of inner-to-outer radius in Fig. 21. These data are plotted for an outer gas volume radius of 60 cm.

The coloring in this figure is included to aid the eye in viewing the results. It can be seen that the maximum acoustic

pressure peaks at the minimum inner-to-outer radius ratio. At the minimum value of this ratio, the maximum amount

of gas volume is available to be compressed, and produce the maximum increase in pressure. Thus the ‘‘rippling’’ that is

seen in Fig. 20 is actually caused by variation of the inner-to-outer radius ratio. It is also noted that the pressure always

peaks at the minimum value of the inner-to-outer radius ratio in Fig. 20, while in the spherical volume study (Cor and

Miller, 2009) the location of the peak pressure varied with the value chosen for the inner shell thickness.
4.3. Inner shells permitted to fail

Parametric studies were conducted with elastic and plastic inner shells that were allowed to fail. Trends were found to

be very similar whether elastic or plastic inner shells were used. Therefore, the results of the plastic shell parametric

study will be presented as representative of both cases. For this study, the material viscosity was 4000 N s/m2, the

material density was 7890 kg/m3, the inner shell thickness was 10% and the plastic modulus was 345 MPa. Fig. 22

shows a contour plot for an initial outer gas volume radius of 60 cm. As before, the contours are for the maximum

acoustic pressure encountered at two initial outer volume radii. In this figure, a phenomenon similar to what was seen in

the spherical analysis is present once again: the maximum acoustic pressure appears to follow different ‘‘orbits’’ around

points in depth/compressive failure stress-inner/outer radius space. The existence of these ‘‘orbits’’ can be explained in

terms of work done on the inner shell. At a given depth, there is a failure stress at which the minimum acoustic energy is

found. At failure stresses lower than this value, the acoustic energy rises because progressively less energy is absorbed by



ARTICLE IN PRESS

Fig. 21. Maximum acoustic pressure at two times the initial outer shell radius plotted against depth and the inner-to-outer radius ratio.

The initial outer gas volume radius is 60 cm and the elastic modulus is 68 900 MPa.
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the shell before it fails. As the failure stress is increased above this ‘‘saddle point’’ value, the growth in pressure inside

the gaseous volume before failure tends to increase the maximum acoustic pressure.
5. Conclusions

Conditions for the various analyses in this study were chosen to be the same as in our previous work for spherical

volumes to facilitate a direct comparison of the trends in spherical and cylindrical geometries. Comparable cylindrical

geometries produced longer periods of oscillations with slightly smaller fluctuations in gas volume surface velocity and gas

pressure. This can partially be explained by comparing the equations of motion for the two different geometries, and

noting that for the spherical equation of motion (Eq. (3)) the gas pressure varies with the radius cubed, while for the

cylindrical equation (Eq. (10) or Eq. (14)) the gas pressure varies with the radius squared. A given change in radius in the

spherical case, therefore, will change the gas volume to a greater degree, which will tend to make the change in gas

pressure larger. Another explanation for the higher gas velocities and pressures in the spherical cases is that the volume of

water acting on the sphere in theory extends to infinity, while in the cylindrical case the assumption is that the influence

only extends to a distance of 7.4 gas radii. This limits the hydrodynamic head that may build up in the cylindrical case.

However, reviewing the results for the two geometries indicates that the differences in velocities and pressures are

moderate. The effective ranges over which the implodable volume affects the liquid acoustic pressure were found to be

comparable for the spherical and cylindrical cases. These results are another indication that the assumption of

lnðr0=RÞ ¼ 2 in the cylindrical case (Kedrinskii, 1976) is reasonable. Since a given change in radius creates a larger change
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Fig. 22. Contour plots of maximum acoustic pressure at two times the initial outer volume radius with a plastic inner shell with a

modulus of plasticity of 345 MPa, an inner shell thickness of 10%, and an initial outer gas volume radius of 60 cm.
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in volume and gas pressure in the spherical case, the critical pressure that will negate the hydrodynamic head will be

reached at a larger radius than in the cylindrical case. Thus the minimum radius of the gas volume is larger in the spherical

case. This radius can also be achieved more quickly, producing larger oscillation frequencies in the spherical case.

When a brittle inner structure is present, it will tend to fail at a lower pressure for an imploding cylindrical volume

than for an imploding spherical volume; however, the cylindrical volume’s peak acoustic pressure is higher. This is

because, for comparable radii, the relative volume left to be compressed after failure is less for the cylindrical case than

for the spherical case. When the inner volume can deform plastically, the inner cylindrical structure will tend to deform

to a greater degree than the spherical structure does, in part because of the higher hoop stress in the cylindrical case.

This increased tendency of the inner structure to deform will lead to lower pressures in the outer gaseous volume and a

lower acoustic pressure as well. When the inner structure can deform elastically, the cylindrical inner structure once

again tends to deform to a greater degree than the spherical structure does, although the peak acoustic pressures for the

cylindrical case is actually slightly higher. Overall trends found for spherical and cylindrical implodable volumes have

been found to be very similar.

The analysis presented here and in Cor and Miller (2009) demonstrate once again that the existence of any interior

structure inside the ruptured container, and its physical properties, can strongly reduce the strength of acoustic waves in

the surrounding liquid. Therefore, we believe that these results demonstrate the advisability of revisiting the current

safety criteria employed for imploding volumes with inner structures.

While trends for cylindrical and spherical geometries are similar, the findings for cylindrical geometries have a

narrower range of applicability. They are most applicable for cylinders with large length-to-diameter ratios and at

points nearly equidistant from the ends of the cylinder. Still, we believe that the simplified analysis presented here can be

a useful tool for doing a computationally economical, first-order analysis on geometrical and structural effects on the

pressure field produced when a cylindrical volume fails near a structure.

It is instructive to review some of the observations of Kedrinskii and co-workers in the context of our specific

problem, and of our application of his methodology and equations. Kedrinskii and Kuzavov (1977) and Kedrinskii

(2005) illustrate that the maximum radius and period of pulsation of a cylindrical cavity with detonation products is

well approximated if the theoretical coefficient ‘‘3/4’’ is used in Eq. (5) with a constant value for g=3 in Kedrinskii

(2005), or if this coefficient is set equal to unity and a variable g is used. Use of the unity value for the coefficient permits

an analytical versus a numerical solution of Eq. (5). The theoretical coefficient (and consequently, numerical treatment)

was employed here because the value of g for cases of interest is essentially constant (we are not interested in detonation

events initiated by chemical explosives) and equal to that of an ideal gas. We prefer the use of ‘‘3/4’’ because it is

justified by theory. Although the convenience of the analytic solution is attractive and offers physical insight for simpler

configurations, interfacing the analytical solution with the numerical solution of the solid structures’ behavior makes its

ease of use less relevant.

Kedrinskii (1971) also observed that for an underwater explosion of a cylindrical charge, 80% of the energy of

detonation products was radiated in the form of a shock wave. This and the supersonic velocities reported by Kedrinskii
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(1972) for cylindrical underwater explosions suggests that the last term on the right hand side of Eq. (5)

ðr=cÞð1� n=cÞdw=dt

should not be neglected. This suggestion appears to contradict the assumption made here that the surrounding water

can be treated as essentially incompressible. The term dw/dt represents the time rate of change of enthalpy; it is very

large for chemically driven explosives, and is the reason for the production of a strong radiated shock wave. For an

implosion initiated pressure pulse, the change in enthalpy is produced by recovery of the kinetic energy (dynamic

pressure head) generated by the water accelerated into the cylindrical gas space by the difference between the external

hydrostatic pressure head and the internal gas pressure. It is approximated by

dw=dt¼ u du=dt

where u is the maximum velocity of the cavity/water surface. The magnitude of this term is limited by the hydrostatic

pressure (or depth) and the gas volume the water accelerates into. At not insignificant depths (such as those considered

here) the magnitude of dw/dt is nowhere near that produced by chemical explosives. This is illustrated in Fig. 4, which

shows predictions of a maximum velocity of 100 m/s at 200 m depth, corresponding to an approximate Mach number

o0.1. In short, at much greater depths than those dealt with here, the incompressible liquid assumption is not valid.

However, for the work considered here, the last term on the right hand side of Eq.(5) may be neglected.

Finally, that the application of the approximation ‘‘ln(r0/R) =2’’ in Eq. (12) gives good and reliable results for

studies of two different types of problems (the implodable cylindrical cavity and the high speed supercavity) should not

be too surprising in view of Kedrinskii’s (2005) observation that the cavity formed near a liquid surface by an explosive

charge has an analog in the cavity formed by a high-velocity penetration of a body into water (a class of problems also

amenable to solution by supercavitation theory).
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